Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7666, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996432

RESUMO

Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Metagenoma , Solo , Bactérias/genética , Lisogenia/genética
2.
Microorganisms ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004642

RESUMO

Microbial response to changing environmental factors influences the fate of soil organic carbon, and drought has been shown to affect microbial metabolism and respiration. We hypothesized that the access of microbes to different carbon pools in response to dry-rewet events occurs sequentially at different rates. We amended desiccated soils with 13C-labeled glucose and measured the rates of 12CO2 and 13CO2 respiration in real time after rewetting. Using these differentiated 12CO2 and 13CO2 respiration rate soils after rewetting, we were able to deduce when microbes are accessing different pools of carbon. Immediately upon rewetting, respiration of 12CO2 occurred first, with negligible 13CO2 respiration. Appreciable metabolism and respiration of the added 13C glucose did not occur until 15 min after rewetting. We conclude that, while all carbon pools are being accessed in the first 9 h after rewetting, the rate and timing at which new and existing carbon pools are being accessed varies. Within this study, using stable isotope-labeled substrates to discern which carbon pools are metabolized first uniquely illustrates how microorganisms access different carbon pools which has implications into understanding how carbon metabolism can further affect climate, carbon sequestration, and soil health.

4.
Microbiome ; 11(1): 34, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849975

RESUMO

BACKGROUND: Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up. RESULTS: Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting. CONCLUSIONS: Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.


Assuntos
Ecossistema , Lipidômica , Aclimatação , Ceramidas , Ácidos Graxos , Ácidos Graxos Insaturados
5.
PLoS One ; 16(12): e0259937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34879068

RESUMO

The microbial and molecular characterization of the ectorhizosphere is an important step towards developing a more complete understanding of how the cultivation of biofuel crops can be undertaken in nutrient poor environments. The ectorhizosphere of Setaria is of particular interest because the plant component of this plant-microbe system is an important agricultural grain crop and a model for biofuel grasses. Importantly, Setaria lends itself to high throughput molecular studies. As such, we have identified important intra- and interspecific microbial and molecular differences in the ectorhizospheres of three geographically distant Setaria italica accessions and their wild ancestor S. viridis. All were grown in a nutrient-poor soil with and without nutrient addition. To assess the contrasting impact of nutrient deficiency observed for two S. italica accessions, we quantitatively evaluated differences in soil organic matter, microbial community, and metabolite profiles. Together, these measurements suggest that rhizosphere priming differs with Setaria accession, which comes from alterations in microbial community abundances, specifically Actinobacteria and Proteobacteria populations. When globally comparing the metabolomic response of Setaria to nutrient addition, plants produced distinctly different metabolic profiles in the leaves and roots. With nutrient addition, increases of nitrogen containing metabolites were significantly higher in plant leaves and roots along with significant increases in tyrosine derived alkaloids, serotonin, and synephrine. Glycerol was also found to be significantly increased in the leaves as well as the ectorhizosphere. These differences provide insight into how C4 grasses adapt to changing nutrient availability in soils or with contrasting fertilization schemas. Gained knowledge could then be utilized in plant enhancement and bioengineering efforts to produce plants with superior traits when grown in nutrient poor soils.


Assuntos
Bactérias/classificação , RNA Ribossômico 16S/genética , Setaria (Planta)/classificação , Setaria (Planta)/crescimento & desenvolvimento , Solo/química , Alcaloides/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Glicerol , Metabolômica , Nitrogênio/metabolismo , Filogenia , Filogeografia , Folhas de Planta/classificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Análise de Sequência de DNA , Setaria (Planta)/metabolismo , Setaria (Planta)/microbiologia , Microbiologia do Solo
6.
J Am Soc Mass Spectrom ; 32(3): 648-652, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258588

RESUMO

Many organisms process carbon and other nutrients to generate energy through aerobic respiration where organic carbon compounds are broken down and oxygen is consumed, producing carbon dioxide and water. Respiration is indicative of active metabolism, and respiration rates are proportional to the amount of living biomass in an ecosystem. Although there are many methods for measuring respiration rates in the laboratory, current systems, such as infrared gas analyzers, are limited in their ability to independently resolve isotopomer fluxes across a range of relevant gases including both CO2 and O2 in real-time. Therefore, monitoring of biological respiration in real time under controlled laboratory conditions would enable better understanding of cellular physiology. To address this challenge, we developed a real time mass spectrometry (RTMS) manifold that simultaneously measures production and consumption of multiple gases and their isotopologues in seconds with the speed and sensitivity necessary to characterize rapidly changing respiration events as they occur. This universal manifold can be fitted to a variety of instruments and affords the same analytical precision and accuracy of the instrument while allowing for the real time measurements. Here, we paired the manifold to a single quad MS with an electron impact (EI) source operated in scan mode to detect extracted target gases by their respective masses (e.g., 12CO2 at mass 44, 13CO2 at 45). We demonstrated applicability of the RTMS instrument to different biological ecosystems (bacterial cultures, plants, and soil), and in all cases, we were able to detect simultaneous and rapid measurements of multiple gases in real time, providing novel insights into complex respiratory metabolism and the influence of biological and environmental factors.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Espectrometria de Massas/métodos , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...